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Executive Summary
This white paper provides a technical explanation of Quantropi’s Quantum 

Entropy Expansion and Propagation (QEEP) technology. Please visit Quantropi’s 

website at https://www.quantropi.com for more information.

Quantropi’s QEEP allows for the generation and secure exchange of ultra-high 

entropy cryptographic keys to secure application-layer communication links and 

to securely encrypt data with FIPS 140-2 compliant cryptographic algorithms, as 

well as the One-Time-Pad.

The QEEP technology, patented by Quantropi in 2019, uses quantum 

permutation gates. QEEP uses these quantum gates to concentrate a high level 

of entropy (up to 1,000,000 bits) and release that entropy to given inputs, in turn 

rendering these inputs indistinguishable from truly random.

This document gives an overview of the QEEP technology. For more 

information about its use in applications such as Quantropi’s QRNG, QKD, and 

QOTP, please refer to our website and other white paper resources.

Terms
Cryptography

Key — A piece of information that determines the functional output of a cryptographic 
algorithm. For encryption algorithms, a key specifies the transformation of plaintext 
data into ciphertext. A key is not synonymous with ‘password’, although  
a key can be derived from a password via a Key-Derivation-Function (KDF).

Key Exchange — The process by which cryptographic keys are exchanged between 
two parties, allowing the use of a cryptographic algorithm, for instance to create  
a secure communication channel.

Entropy — A measure of the number of ways in which a system may be arranged,  
or information uncertainty — typically measured in bits.

Asymmetric Algorithm — A cryptographic system that uses pairs of keys: public keys 
that can be distributed widely, and private keys which are known only to the owner. 
Asymmetric algorithms are commonly applied to solve the key-exchange problem, 
e.g., via the Diffie-Hellman protocol, or public-key-infrastructure (PKI). Examples for 
asymmetric algorithms are RSA, ECC, or ED25519.

Symmetric Algorithm — A cryptographic system that uses the same key for 
encryption of plaintext data and decryption of ciphertext data. Commonly used  
to encrypt the communication channel, and requires either a pre-shared secret,  
or a key exchange to have taken place prior to starting the communication. 
Examples of symmetric algorithms are AES, RC4, or 3DES.

Perfect Secrecy — The condition that a ciphertext C contains absolutely no additional 
information about a plaintext M. Thus every possible M is equally likely correct. 
Perfect secrecy provides the upper bound of information theoretical security.

One-Time-Pad — A cryptographic algorithm that cannot be cracked: it provides 
mathematically provable perfect secrecy. A given plaintext data M is combined with 
a true random key K via modular addition (XOR). Needs truly random keys to satisfy 
perfect secrecy requirements, and also requires secure exchange of the OTP keys.
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Quantum Key Distribution
BB84 — A protocol to mutually agree on a measurement basis to select random 

measurement outcomes.
QBER — The Qubit Error Rate, a statistical measure that allows to determine whether  

an attacker is eavesdropping on the key exchange.
PSK — The pre-shared secret that provides mutual authentication for the two parties 

participating in the quantum key exchange.

Quantum Computing
Qubit — The basic unit of quantum information. Physically a two-state 

quantum-mechanical system that allows for coherent superpositions of states 
simultaneously.

Superposition — A fundamental principle of quantum mechanics describing that 
two or more quantum states can be added together (superposed) and the result is 
another valid quantum state. Mathematically, the linear combinations of solutions 
to the Schroedinger equation.

Eigenstate — Represents the physical state of a qubit quantum system, and has two 
attributes: an eigenvector and an eigenvalue.

Eigenvector — A bit-string represented in Dirac notation that describes the 
orthonormal basis of the (quantum-representation) of the system, i.e. the unit 
vectors of the Hilbert space.

Eigenvalue — The decimal value of each bit-string associated with an eigenvector, 
represents the information value of the eigenstate.

System Hamiltonian — An operator defined by the Schroedinger equation that  
acts on a given eigenvector to obtain the eigenvalue of the quantum system.

Perturbator — An operator acting on the eigenstate of a quantum system to change  
that eigenstate, i.e., an operator that adds change to a quantum system.

Quantum Gate — The building blocks of quantum computers. Quantum-
mechanically they are perturbators to the qubit quantum system, and practically 
allow us to make calculations with quantum computers.

Introduction
With current rapid advancements towards main-stream quantum computing 

technology in line with IBM’s 2018 predictions of quantum-computing industry 

viability within 5 years, as well as Google’s 2019 achievement of Quantum 

Supremacy, we are getting close to being able to solve complex mathematical 

problems that would take classical super-computers hundreds of thousands of 

years to work through.

At the same time, intractable (it is possible to find a solution, but would take 

an impractical amount of time to do so) mathematical puzzles form the basis 

for today’s cryptographic algorithms protecting information secrecy, privacy 

and integrity.  These puzzles are trivially solvable with quantum computers. 

Together with our increasing economic and social dependency on data and the 

communication networks to transmit that data, quantum computers pose a 

significant existential threat to modern society.
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The immediate need to find solutions that address and mitigate the quantum 

threat was highlighted in a status report on Post-Quantum Cryptography by 

the Computer Security Resource Center at the National Institute of Standards 

and Technology (NIST CSRC), urging individuals, enterprises and governments 

to begin preparing their information systems today to being able to resist the 

imminent adoption of quantum computing.¹

Protecting Against the Quantum Threat
The quantum threat’s most immediate impact will be on current mechanisms 

of securing communication channels. These channels rely on establishing 

cryptographic keys between two parties who wish to communicate over the 

channel. To provide quantum-security, these keys must be of high entropy, 

and the key-exchange needs to be carried out securely. Unfortunately, the key 

generation and exchange mechanisms in place today are no challenge for even 

modest quantum computers: a study published by Microsoft Research² predicts 

that it would take a quantum computer less than 100 seconds to recover the key 

and thus break the communication link.

Currently proposed solutions to mitigating the quantum threat fall into two 

main categories: 

1.	Post-Quantum Cryptography — the development of new cryptographic 

algorithms that even quantum computer cannot compute a solution for in 

practical time.

2.	Quantum Key Distribution — the use of quantum systems, such as photons,  

to protect data encoded into the systems against measurement.

These solutions have significant shortcomings with respect to practicality, 

maturity, and commercial viability for wide-spread adoption at scale.

We Are Here To Help
Quantropi was founded to accelerate the adoption of quantum-secure 

technologies today, and to fill the void of commercially viable technology 

solutions that provide a low-friction upgrade and integration path to make today’s 

existing information systems and network infrastructure quantum-secure.

By harnessing the power of quantum mechanics, we are not only building 

solutions that make communication networks quantum secure, but also more 

efficient at a reduced energy footprint.

Building the Quantum Internet
At Quantropi, we believe that as we step into the era of ubiquitous digital 

technology where our economies are driven by the creation of data, the 

communication of that data, as well as technologies such as machine learning 

and artificial intelligence to distill and act on insights derived from the data, 

the need for highly secure communication networks that protect information 

secrecy, privacy and integrity against actors with access to quantum computing 

technology will become as much of a foundational element for our societies,  

as access to clean water and food.

1. NIST-IR 8105, last accessed 

February 2020,  https://doi.

org/10.6028/NIST.IR.8105

2. K. Svore, “Quantum 

Computing: Transforming 

the Digital Age”, Quantum 

Optimization Workshop, 2014.
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Our technology solutions are founded on the principle that one can only 

counter the quantum threat with quantum. However, the applications and 

integrations of these quantum technologies need to be applied in an evolutionary 

approach: after 50+ years of technology investments and building up the existing 

communication networks and information systems, it is highly irrational to  

think that we can rip out and replace what already exists: instead we advocate 

solutions that can work and integrate with existing infrastructure and systems  

to protect them against the quantum threat and ultimately bring about the 

Quantum Internet.

Quantum Entropy Expansion  
and Propagation

Within the context of quantum-safe communication, both QKD and PQC try 

to solve the problem of key exchange - that is establishing a cryptographic key 

between two parties Alice and Bob in such a way that a third party, Eve, cannot 

know the key even under the assumption that Eve has access to a quantum 

computer.

Post-Quantum Cryptography aims at distributing the key securely from 

Alice to Bob by transforming the key information in such a way that it would 

take even a quantum computer an impractical amount of time to recover the 

correct transformation. In other words it extends the concept of security through 

intractability to the domain of quantum computing.

Quantum Key Distribution on the other hand takes a different approach: 

instead of transforming the key information, the information is encoded 

onto information carriers — commonly photons — that are untouchable, i.e., 

measurement of the quantum system (the photon) carrying the information is 

protected by the Uncertainty Principle. The two communicating parties following 

a pre-defined key exchange protocol such as BB84, can detect the presence of an 

eavesdropper on the channel through increased QBER.

Quantropi’s solution called Quantum Entropy Expansion and Propagation, 

or QEEP, is a third approach next to PQC and QKD, and turns information 

systems into quantum information systems such that information becomes 

uninterpretable. Information, such as a key, undergoes a transformation through 

a quantum perturbation process such that every possible interpretation of 

the resulting information becomes equally likely to be correct. This creates a 

uniform superposition state protecting the information through the Generalized 

Uncertainty Principle.

Unlike PQC approaches, the transformation of information is not based 

on complex mathematics, but on quantum mechanics. QEEP uses quantum 

permutation gates, a type of quantum gate typically found in quantum computing 

as the perturbation operator. This makes QEEP provably secure, magnitudes 

faster and provides significant energy savings over PQC.

Unlike QKD approaches using fragile quantum systems that collapse under 

measurement as information carriers to achieve quantum safe key exchange, 

QEEP protects the information itself with quantum perturbation. This makes 
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QEEP independent of the underlying communication infrastructure and  

allows QEEP to provide an evolutionary upgrade path for existing infrastructure. 

A Quantum Representation of Information
Consider a classical computing system: a physical system with registers that store 

information. Take for instance a system with an 8-bit register: each of the eight 

slots of the register stores a single bit of information, with the register being either 

on or off, encoded as 1 or 0. To represent the physical state of the information 

stored in this register, computer scientists commonly use bit-strings. For example, 

the bit-string ‘01001101’ describing the physical state of the register encodes 

the binary number 010011012 representing the information value of a decimal 

number 7710.

In addition to this classical representation of information described above, 

quantum computing provides us with a quantum-mechanical representation 

of information. While information systems based on qubits require such a 

representation to be accurately described, it is rarely applied to classical bits - 

however, it can describe classical information just as accurately.

While classical bits are in exactly one of two states, 0 or 1, a qubit contains 

coherent superpositions of both states. Thus to describe the general quantum 

state of a qubit, we turn to quantum mechanics and represent the quantum state 

as a linear superposition of its two orthonormal basis vectors in a Hilbert space. 

These basis vectors are usually written in Dirac notation and labeled with the bit 

strings of the information value they represent. For example: 

|0⟩ = [ 𝟏
𝟎 ]    |1⟩ = [ 𝟎 

𝟏 ] 

and together form the computational basis spanning the two-dimensional Hilbert 

space of the qubit. The quantum system generated by two qubits would span a 

four-dimensional Hilbert space represented by four basis vectors as:

|00⟩ = �
𝟏
𝟎
𝟎
𝟎

�    |01⟩ = �
𝟎
𝟏
𝟎
𝟎

�    |10⟩ = �
𝟎
𝟎
𝟏 
𝟎

�    |11⟩ = �
𝟎
𝟎
𝟎
𝟏
�

In general, an n-qubit system would be represented by a superposition state in a 

2n-dimensional Hilbert space.

Since a qubit state is a superposition of the basis states, we can describe a 

single qubit by a linear combination of the basis vectors:

|ψ⟩ = α|0⟩ + β|1⟩    |α|² + |β|² = 1

where α and β are complex numbers describing probability amplitudes. We can 

now see that classical bits can also be described quantum mechanically: a classical 

computer system is a 2-level system (voltage on, or voltage off). We then have one 

unit vector for voltage on, and another unit vector for voltage off. However, for 

classical computer systems, both levels of the state are mutually exclusive (either 

on or off, but not both at the same time). Thus, a classical bit system is a special 

case of a qubit system with the following properties of the coefficients:
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|ψ⟩ = α|0⟩ + β|1⟩     α, β ∊ [0,1]    α = 1, β = 0    α = 0, β = 1

When we measure a qubit, we perform an irreversible operation in which 

information is gained about the state of a qubit and the qubit collapses to a basis 

state |0⟩ with probability ‖α‖2 and ‖1⟩ with probability ‖β‖2.

Quantum Permutation Gates
Quantum Logic Gates (short: “Quantum Gates”) operate on qubits. 

Mathematically, operators are a linear transformation of the qubit state vectors 

in Hilbert space and are represented by 2n×2n unitary (“reversible”) complex 

matrices. Quantum-mechanically, quantum gates act as perturbation operators to 

the qubit states and allow us to do computations.

One quantum gate is of particular interest in quantum computing: the 

Hadamard gate maps the qubit basis states |0⟩ and |1⟩ to two superposition states 

with equal weight. Many quantum algorithms use the Hadamard gate as an initial 

step to map m qubits initialized with a |0⟩ basis state to a superposition of all 2m 

orthogonal states with equal weight. However, the Hadamard transform also 

find applications outside of quantum computing. For example, the Hadamard 

transform is widely used in classical computing for data encryption, signal 

processing, and data compression such as JPEG and MPEG-4.

In general, we find two classes of quantum gates in quantum computing:

1.	Non-classical gates allow for the massively parallel computing power  

that quantum computers are recognized for. An example of a non-classical 

gate is the Hadamard gate. The 1-qubit Hadamard gate has the matrix 

representation:

𝐻 = 𝐻  ⁻¹ = 


1
 �1� 1

1�–1�

	 and creates a superposed state with equal weights to the bases:

𝐻 |0⟩ = 


1
 �|0⟩+|1⟩�    𝐻 |1⟩ = 



1
 �|1⟩ – |0⟩�

2.	Classical behaviour gates, instead of mixing eigenstates, swap the 

eigenstates. Classical behaviour gates have a representation through 

permutation matrices. A permutation matrix is obtained by swapping the 

rows of an identity matrix. An example of a classical behaviour gate is the 

Pauli gate. The 1-qubit Pauli gate has the matrix representation:

𝑃 = 𝑃  ⁻¹ = �0� 1
1� 0�

	 and flips the eigenstate:

𝑃 |0⟩ = |1⟩    𝑃 |1⟩ = |0⟩
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In general, as n-qubit quantum gates are represented via matrices of dimension 

2n×2n matrix, operating on the 2n eigenstates, it immediately follows, that the 

number of unique permutation gates is (2n)!. These properties make quantum 

permutation gates useful for information security. 

Consider a 2-qubit system with an initial state |ψ��⟩ as illustrated in Figure 2. 

The initial state |ψ�⟩ is operated on with a permutation gate P to create a 

transformed state |ψ�⟩ that we can transmit over a network. On the receiving 

end, we use the inverse permutation gate P⁻¹ to operate on |ψ�⟩ to generate a 

transformed state |ψ�⟩ that we can then measure to obtain the information value λ 

associated with this state.

From an information security point of view, two questions are key:

1.	Suppose you have knowledge about |ψ�⟩, can you obtain knowledge  

about |ψ�⟩?

2.	Suppose you have knowledge about |ψ�⟩, can you obtain knowledge  

about P or P�𝟏 ?

To answer these questions, let us first look at an example for the 2-qubit case:

•	 First, we established in the previous section, that there are (2n)! = (22)! =  

4! = 24 possible permutation gates for n=2.

•	 Suppose Alice picked gate P19 to transform her state |ψ�⟩ = |01⟩ into |ψ�⟩ = |01⟩ 

•	 Now, suppose |ψ�⟩ is observable by Bob.

•	 To Bob the question is : how could |ψ�⟩ have been created by Alice?

|��₂⟩

|��⟩

|��₁⟩

|��₂⟩
�|��⟩

|��₁⟩

�̂ �†̂

Figure 1: State transformation using permutation gates

Figure 2:  
The 24 
permutation  
gates for a  
2-qubit system.
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•	 Surprisingly, |ψ�⟩ could have been created from any possible |ψ�⟩ state:

•	 from |ψ�⟩ = |00⟩ via P1, P4, P7, P10, P18, P20

•	 from |ψ�⟩ = |01⟩ via P0, P5, P6, P11, P19, P21

•	 from |ψ�⟩ = |10⟩ via P2, P3, P8, P9, P22, P23

•	 from |ψ�⟩ = |11⟩ via P12, P13, P14, P15, P16, P17

•	 Each of the gates appears exactly once, and for each possible state |ψ�⟩,  
there are (2n–1)! possible gates producing the observed state |ψ�⟩.

•	 Each permutation gate and state |ψ�⟩ are equally likely to have produced  

the observed state |ψ�⟩

We say the information in |ψ�⟩ exists in a uniform superposition of all possible 

interpretations of the meaning of |ψ�⟩. 
Concretely, each quantum permutation gate Pi becomes a measurement basis 

under which we can measure |ψ�⟩. Only under the correct measurement basis — the 

same gate selected by Alice, would Bob’s and Alice’s interpretations of  state |ψ�⟩ be 

the same.

Now consider Bob blindly picked a gate Pi at random. 

•	 Naively, Bob would have a 1 in 24 chance to exactly pick the right Pi .

•	 At the same time, Bob has a 6 in 24 = 1 in 6 chance to pick some Pi that ends 

up producing the right interpretation of |ψ�⟩ into |ψ�⟩. 

•	 Third, Bob could directly guess |ψ�⟩ without even trying to guess Pi. He has  

a 1 in 6 chance to do so

Thus, from an optimal strategy point of view, the best Bob can do, is to guess |ψ�⟩ 
with a chance of 1/2n for an n-qubit state. From an information security point of 

view this satisfies the requirements of Perfect Secrecy. 

Entropy Expansion
Claude Shannon in 1948 defined Information Entropy as the measure of 

uncertainty in the information and is formulated as:

𝐻 = 𝑙𝑜𝑔₂D

For a classical n-bit system, n bits can describe 2n pieces of information  

(in computer science, commonly bit-strings interpreted into decimal numbers). 

The entropy in such a system is:

𝐻 = 𝑙𝑜𝑔₂2 =  𝑛 = 𝑛 * 2⁰

No surprise here: a classical bit can only attain one of two discrete values,  

0 and 1 thus contains maximally one bit of Shannon information. 

In contrast, a qubit can take on information values of 0, 1, and any 

combination of either. This superposition allows for additional degrees 

of freedom that increase the uncertainty in the information — or entropy. 

Yet, ultimately we need to measure the qubit at which point we collapse the 
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probability amplitudes and project the state space back into a 2n information 

space (see Figure 3).

However, within the computational space things are different: the 

superpositions created by quantum gates that generate varying degrees  

of freedom. 

Within the frame of reference that initial states correspond to basis vectors 

(e.g., |00⟩, |01⟩, |10⟩, or |01⟩ for a 2-qubit system) and allowing transformations 

by quantum gates we introduce 2n additional degrees of freedom over classical 

bits: we are operating with 2n×2n operators in a 2n-dimensional Hilbert space 

where each vector carries n bits of information. Thus the required information to 

describe state vectors in this space is:

𝐻 = 𝑙𝑜𝑔₂2 =  𝑛 * 2𝒏

Restricting allowable transformations to permutation gates only creates an 

entropy spectrum that is slightly biased: each permutation gate corresponds 

to a unique 1:1 mapping of one basis vector to another basis vector, without 

repetitions. Thus the required information to describe this sub-space is:

|ψ
i
  basis vector

2n basis vectors

measure

operate

States operated 
on by Boolean 
Algebra

2n-dimensional 
Hilbert Space

States operated 
on by Complex 
Algebra

(n-bits)

|ψ

Entropy
Expansion

2n distinct pieces of information
“eigenstates”

+
many superposition

states

Information Space
(scalar)

measure

operate

n Bits can represent

2n distinct pieces of information
“bit strings”

Information Space
(scalar)

n Qubits can represent

Computer Space
(scalar)

Computer Space
(vector space)

Figure 3: The information required to 
express the information and computation 
spaces of classical bits and quantum bits 
are different. To express qubit states in 
Hilbert space we need more information 
even though measurement of the states 
collapses them to a 2ⁿ information space.
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𝐻 = 𝑙𝑜𝑔₂2 =  𝑙𝑜𝑔₂(2𝒏)!

For large n, this reduces to:

𝑛 → ∞ : 𝐻 = (𝑛 –  2)2𝒏

We call this increase of information entropy introduced by application of 

permutation gates “Entropy Expansion”. It is this Entropy Expansion that allows 

for information security: classical information with two exclusive discrete states 

allows each bit of information to carry exactly one bit of uncertainty, whereas in 

the quantum world, information states itself carry uncertainty such that each bit 

of information can carry more than one bit of uncertainty. 

How does this not violate our classical understanding of Shannon entropy? 

The uncertainty in quantum information is “inherent”: to extract a particular 

information from the quantum system, we have to perform a measurement. This 

measurement collapses the quantum state into a classical state corresponding to 

the probabilities associated with the probability amplitude coefficients (e.g., α and 

β) and the information entropy is then contained within the Shannon boundary.

Entropy Propagation
We have seen in the previous section, that information security stems from the 

different interpretation possibilities of the transformed state , after being operated 

on with a permutation gate — in particular, all interpretations are equally likely 

|��⟩

|��₁⟩

|��₂⟩

(2�–1)!

2�

(2�–1)! (2�–1)!

|��₂�⟩

Figure 4: Superposition paths of 2-qubit transformation
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to be correct. We can visualize this relationship as a state-transformation path 

diagram as shown in Figure 4.

For a given observed state |ψ�⟩, this state could have been produced from 

any of the 2n initial states |ψ�⟩ with equal likelihood, via any of the (2n–1)! paths 

(permutation gates). We can now calculate the probability of an observer Eve 

obtaining the correct initial state |ψ�⟩ by brute force enumeration of the entire 

space of possible paths to |ψ�⟩.
This probability is equal to directly guessing the initial state |ψ�⟩. Coming back 

to the two central questions about information security stated in the previous 

section, we now have a quantum mechanical explanation:

1.	“An observed state |ψ�⟩ does not leak information about |ψ�⟩” is a direct 

outcome of the Uncertainty Principle between the permutation operator and 

the System Information Hamiltonian H0. This Uncertainty Principle [H0 , P] 

≠ 0 tells us that the relationship between |ψ�⟩ and |ψ�⟩ is one of perfect secrecy. 

This Uncertainty alone, however does not guarantee security under re-use: 

consider the XOR operator, for example which does not commute with the 

System Information Hamiltonian (satisfies the Uncertainty Principle), but 

we know from the One-Time Pad that we can only use the operator once 

(hence the “one-time” in the name).

2.	“An observed state |ψ�⟩ does not leak information about P” is a direct 

outcome of the Uncertainty Principle [P , P’] ≠ 0 between permutation 

operators. This Uncertainty Principle tells us that we can re-use the operator, 

but the security is not necessarily perfect.

The QEEP mechanism presented in this white paper satisfies both Uncertainty 

Principles, thus representing a mechanism that is both: reusable and protected 

by perfect secrecy. However, this also allows us to freely distribute a transformed 

state |ψ�⟩ without fear of compromise of either the initial state |ψ�⟩, or the randomly 

selected permutation gate P. Of particular interest is the following observation: 

we may freely distribute |ψ�⟩ thus over any network medium that can carry the 

state, and security does not stem from an inability to measure state |ψ�⟩ but an 

inability to correctly interpret state |ψ�⟩ without knowledge of the permutation 

gate P that was used to prepare |ψ�⟩.
Since quantum gates are reversible computational constructs, they are 

mathematically expressed as unitary matrices. Quantum-mechanically, this 

allows a receiver, Bob, to recover the initial state |ψ�⟩ with an inverse quantum 

gate G†, from a state |ψ�⟩ prepared and transformed by Alice via a corresponding 

quantum gate G, even when the transmitted state |ψ�⟩ is a superposed state.

We call this ability to take any state |ψ�⟩, operate on it with a quantum gate 

G to produce a transformed state |ψ�⟩, distributing |ψ�⟩ freely without fear of 

compromise of the initial state or the quantum gate, and recovering the initial 

state |ψ�⟩ from |ψ�⟩ with a inverse quantum gate G† at the receiver end,  

“Entropy Propagation”.

If our transmission mechanism allows sending and receiving of quantum 

states, we can use any quantum gate G for this process. However, by restricting 

the Quantum Entropy Expansion and Propagation process to Permutation Gates, 
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we decouple information entropy from infrastructure, as the transformed states 
|ψ�⟩ are transmittable over classical communication channels. Why we are able to 

do so, may not be intuitively obvious.

In general a quantum state is defined as a linear combination of basis vectors 

with complex coefficients representing probability amplitudes such that the sum 

over the square norm of the coefficients equals 1 (i.e., the sum of probabilities 

equals 1). In the case that the coefficients are such that any measurement of the 

state would with a probability of 1 collapse to the equivalent classical state, then 

such a state is transmittable over classical infrastructure: operating on the state 

and measuring the state can be combined in a single action and the outcome can 

be digitally encoded and transmitted over classical infrastructure.

Conclusions
In this white paper, we presented a novel approach for the transformation of 

information via quantum permutation gates, called Quantum Entropy Expansion 

and Propagation (“QEEP”). We described our approach through the mathematical 

framework of quantum-mechanics. 

The result of transforming an (quantum-)information state with a permutation 

gate is a transformed state that does not leak information about either the 

operator (permutation gate) or the initial state. The protection of both initial state 

and operator are a direct result of the two Uncertainty Principles that govern the 

QEEP mechanism. Furthermore, any possible interpretation of the transformed 

state has equal likelihood of being correct without knowledge of the operator that 

was used to generate the transformed state — satisfying the property of Perfect 

Secrecy (“uncrackable”).

In the case that quantum channels at our disposal, we can allow for the use 

of any quantum gate satisfying both Uncertainty Principles. However, of most 

practical use today is the subset of quantum gates called permutation gates that 

create transformed states which we can present with classical information bits 

and transmit over classical communication channels. 

These properties allow for the QEEP to be a perfect solution to the key-

exchange problem over existing infrastructure, as a cost-effective, energy-

efficient, and scalable alternative to both photonic Quantum-Key-Distribution 

and Post-Quantum Cryptography.
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