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Abstract— Quantum permutation pad or QPP was first 
proposed by Kuang and Bettenburg in 2020 [15]. QPP is a 
generic quantum algorithm consisting of multiple n-qubits 
quantum permutation gates. As a quantum algorithm, QPP can 
be implemented both in a quantum computing system as a 
quantum circuit operating on n-qubits’ state for transformation 
and in a classical computing system represented by a pad of n-bit 
permutation matrices. QPP has two unique characteristics: huge 
Shannon information entropy and non-commutativity between 
permutation matrices or the generalized uncertainty principal. 
Permutation transformation is bijective mapping between input 
information space and output ciphertext space. That means, QPP 
has the property of Shannon perfect secrecy with reusability due 
to the uncertainty relationship. QPP is the generalization of One-
Time-Pad or OTP over Hilbert space and OTP is the 
simplification of QPP over a Galois field. Based on those, this 
paper explores a variant of AES for a quantum safe lightweight 
cryptography by incorporating AES ShiftRows and MixColumns 
with QPP or called AES-QPP. AES-QPP unifies the SubBytes 
and AddRoundKey with the same QPP of 16 8-bit permutation 
matrices, essentially SubBytes to be a special 8-bit permutation 
matrix and AddRoundKey to be 16 8-bit permutation matrices 
selected from XOR operations. By randomly selecting 16 
permutation matrices with a secret key material, AES-QPP could 
hold a total equivalent 26,944 bits of Shannon entropy.  It not 
only improves the security against differential and linear attacks 
but also largely reduces the number of rounds to 5 rounds. AES-
QPP could be a good candidate for quantum safe lightweight 
cryptography. 
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I. INTRODUCTION  

The U.S. National Institute of Standards and Technology 
(NIST) announced that AES would adopt the Rijndael cipher 
as a specification for the encryption of electronic data in 2001 
[1], where details of the algorithm design can be found in [2]. 
AES is a typical block cipher with block size of 128 bits or 16 
bytes. The algorithm is standardized to only accept key 
lengths of 128, 192, and 256 bits, and consists of multiple 
rounds: 10, 12, and 14 rounds, determined by the key lengths, 

respectively. A typical AES round consists of four steps: 
SubBytes, ShiftRows, MixColumns, and AddRoundKey. 
SubBytes is a substitution transformation which takes a single 
byte as the input, and uses a static, 16x16 S-Box to substitute 
for an output. The S-Box is derived from mapping the input 
byte to its multiplicative inverse over Galois field GF(28) = 
GF(2)[x]/(x8+x4+x3+x+1), which represents a very well 
selected non-linearity. ShiftRows permutes the positions of 
each byte inside the block based on a static permutation box, 
or P-Box. It can be simply considered as byte position 
permutation within a block. The output state is again used as 
the input state for the MixColumns operation. In the 
MixColumns step, the transformation can be represented by a 
left multiplication, of the AES state, by the  Rijndael 
maximum distance separable (MDS) matrix used to increase 
diffusion capability 

The first three steps are static and deterministic, without 
involving the encryption key. So, they can be considered as a 
pre-randomizing process for AddRoundKey, where  entropy is 
injected into the input plaintext and the output state of 
MixColumns is carried out by a bitwise XOR operation with a 
round-key generated from the AES key scheduling process. 
Through multiple rounds, AES can produce good random 
ciphers with excellent confusion and diffusion  properties.  

The AES cipher is classified as a substitution-permutation 
network (SPN). There are two major types of attacks for 
SPNs: differential and linear analysis attacks [3]. The 
differential analysis attack arises from the non-linear 
transformations of the static S-Box which transforms input 
bytes into output bytes with some characteristic of XOR 
differences, especially impossible differences found at round 
4, which leads  to powerful impossible differential attacks 
[4,5]. The attackers investigate the XOR of pairs of input and 
output states and apply  known characteristics to crack the 
AES key. The differential analysis attack can be further 
improved with sets or multisets of input and output XOR  
results to create a new attack called an integral attack [6].  On 
the other hand, AddRoundKey at the end of each round 
performs a linear transformation between rounds which leads 



the linear analysis attack [3, 4, 5, 6], also leveraging from the 
AES key expansion algorithm which has strong correlations 
between round-keys.    

Many techniques have been explored to make AES 
resistant against the differential and linear attacks. Tiessen et 
al in 2015 [6] replaced the static S-Box with a secret S-Box, 
selected randomly based on the supplied AES encryption key. 
They presented attacks based on integral cryptanalysis that can 
recover both the secret S-Box and the encryption key after six 
rounds of AES with a time complexity of 290, which is less 
than the general brute-force attack. Kazlauskas et al in 2015 
[7] also investigated the key-dependent S-Box. Dara and 
Manochehri in 2014 [8] generated the S-Box with RC4 key 
scheduling algorithm. Das et al in 2012 [9]  used different 
irreducible polynomials over GF(28) to create random S-Box.  
 In addition to classical attacks, classical cryptographic 
standards face potential quantum computing threats as rapid 
advancements in the development of  quantum computers  are 
being made. In September 2019, Google declared quantum 
supremacy [11] based on its 54-qubit quantum computer called 
“Sycamore” — a milestone achievement in quantum 
computing development. The well-known Shor’s algorithm 
(1994) [10] provides an exponential speedup in breaking 
current public key exchange standards but is still largely 
theoretical as there is no powerful enough universal quantum 
computing device available.  On the other hand, Wang et al 
(2020) [12] made a milestone achievement in prime 
factorization with  D-Wave's annealing quantum computer. 
They successfully factorized all integers within 10,000 and 
demonstrated the best index (20-bit integer (1028171)) for 
deciphering RSA via the quantum computing software 
environment provided by D-Wave. Their method provides a 
completely different way than Shor’s algorithm to factorize 
integers and opens a new path  for cracking strategies for 
public key cryptographies based on computational difficulty. 
The D-wave quantum computer may be closer to cracking 
practical RSA codes than a general-purpose quantum computer 
using Shor’s algorithm. The commercial availability of 
quantum computers, especially of the quantum annealing type, 
poses a major existential threat to today’s public key 
exchanges, shaking the foundations of contemporary 
information security.  
 Moreover, L. Grover  invented a new quantum search 
algorithm called Grover’s algorithm (1996) [13], which solves 
the unstructured search problem of size n in  O( ) queries, 
while any classical algorithm needs O(n) queries. This speedup 
requires the key length of standard AES to be raised from 128 
bits up to 256 bits with true randomness to retain the security 
of AES. Bonnetain, Naya-Plasencia, and Schrottenloher in 
2019 [14], developed their quantum security analysis of AES.  
  In their 2020 paper [15], Kuang and Bettenburg proposed a 
novel way to represent classical bits as quantum computational 
basis states to harden the security of classical cryptographic 
algorithms against the inevitable threats posed by quantum 
computing. The fundamental difference between classical 
computing and quantum computing lies in the  computing 
algebra; it is shifted from Boolean algebra over Galois field 

GF(2n), to linear algebra over Hilbert space (ℂ2)⊗n, where n is 
the number of quantum bits. Quantum bits, or qubits, are 
naturally equipped with  the characteristics of superposition 
and entanglement, which endow quantum computers with  
parallel computing capabilities. There  remains a vast number 
of quantum logic gates to be created to unleash  the super-
computing power of qubit systems. However, it is well-known 
from quantum computing that there exists a special class of 
quantum logic gates, called quantum permutation gates, that 
exhibit a classical behavior.  They are bijective mappings from 
the quantum computational basis to itself.  The extremely large 
size of the quantum permutation gate space, 28! (factorial), for 
an 8-qubit quantum computational basis holds huge equivalent 
Shannon information entropy,  desirable for information 
security. It turns out that this  classical-behavior class of 
quantum logic gates forms a group representation of the 
symmetric group on 256 characters, S256, and can be applied  to 
both qubits and bits . Kuang and Bettenburg [15] successfully 
extend the Shannon perfect secrecy of the classical one-time-
pad (OTP)  over GF(2n) [16], to their proposed quantum 
permutation pad (QPP)  over a  quantum computational basis. 
In contrast to the one-time-use nature of  OTP, QPP retains  
Shannon perfect secrecy  over multiple uses, thanks to the non-
commutativity and non-involutory properties of the symmetric 
group. In this paper, we extend the work presented in [15]  to 
AES and propose a lightweight quantum safe cryptography 
called AES-QPP.  

In the  remainder of this paper, Section 2 is devoted to  the 
summary of quantum permutation pad, a proposed AES round 
replacement  and a security analysis, is in Section 3. Section 4 
will discuss the randomness of AES-QPP ciphers from AES-
QPP with different numbers of rounds. The conclusion will be 
drawn at the end. 

II. SUMMARY OF QUANTUM PERMUTATION PAD 

A. Quantum Permutation Gates 

A quantum logic gate or quantum gate is a basic quantum 
circuit operating on a small number of qubits. Quantum gates 
are simply classified into two categories: non-classical 
behavior and classical behavior gates. The former represents 
quantum superpositions and entanglements and the later is 
deterministic transformation from an input state of the system 
to an output state, or simply state permutation. For an n-qubit 
system with 2n information states represented by Galois field 
GF(2n), the entire state permutations form the symmetric group 
S

2n, with total 2n! unique permutations. A generic permutation 

gate can be physically implemented with an algorithm 
proposed by Shende et al in 2003 [17] using quantum NOT, 
CNOT and TOFFOLI gates.   

An n-qubit permutation gate can be represented by a 2nx2n 
permutation matrix P[2n, 2n] over a quantum computational 
basis: {|0⟩, |1⟩, …., |2n-1⟩}, with only one element to be 1 on 
each row and each column and all others to be 0.   Each 
permutation matrix represents a bijective mapping from input 
information space to output space. There exist 2n! unique 
bijective mappings between input and output information 
space. Therefore, permutation transformations have the 
property of Shannon perfect secrecy.   



Another unique feature of permutation gate is the non-
commutativity, or two different permutations P and P’ follow 
[P, P’] ≠ 0. This relationship can be considered as the 
generalized uncertainty principle which paves the way for 
reusability of a randomly selected quantum permutation pad.  

B. Quantum Permutation pad for AES 

AES is a block cipher with 128 bits or 16 bytes as a block. In 
stead to have a single static permutation matrix or the S-Box 
as used in the standard AES, we can randomly select 16 8-bit 
permutation matrices Pi, i=1, 2, …, 16, as shown in Figure 1 
 
  

 

III.  

 
 
 
Each can be randomly selected by using the Fisher-Yates 
shuffling algorithm with 256 bytes of random numbers, total 
32,768 bits. Algorithm 1 illustrates the pseudo code of QPP 
implemented with the Fisher-Yates shuffling. 
 

Algorithm 1. Pseudo code of QPP mapping from the secret key 

-- only illustrate a single permutation matrix selection 
-- state array S[256]  a permutation matrix P[256][256] 
-- initialize P[256][256]to all zeros 
for i from 0 to 255 
         S[i] = i 
-- input random key k[N] in bytes with N =256 
for i from 255 down to 1 do 
    j = k[i] 
   swap S[j] and S[i]  
for i from 0 to 255 
         P[i][S[i]] = 1 

 
The pseudo-code requires a random input secret key of length 
256 bytes for each permutation matrix. This can be extended 
for smaller or up to 4KB based on the actual security 
consideration with a suitable key expansion algorithm to make 
its length to 256 bytes per permutation matrix. 

III. PROPOSED AES-QPP 

It is a natural thought to unify both SubBytes and 
AddRoundKey with the same QPP of 16 8-bit permutation 
matrices and maintain the original ShiftRows and 
MixColumns steps.  Then a typical round in this AES-QPP 
becomes QPP + ShiftRows + MixColumns + QPP    
 SubBytes:  QPP of 16 permutation matrices selected 

from the 8-bit permutation group with the shared secret 
key materials  

 ShitRows: no change 
 MixColumns: no change 
 AddRoundKey:  the same QPP as in the SubBytes step 

Unlike the standard AES, the entropy injection into plaintexts 
in the encryption only exists in the AddRoundKey step with 
maximum 128 bits of entropy, AES-QPP can inject up to 
32,678 bits of entropy through QPP permutation step. The 

actual entropy can be decided based on the security 
requirement. 

In AES AddRoundKey, the encryption is performed by using 
16 input bytes directly XORed with a round key of 16 bytes 
long. In AES-QPP, the encryption is similar to AddRoundKey 
step, but each byte in the input block is encrypted by the 
corresponding permutation matrix based on its byte integer 
value as a row index of the permutation matrix, and then the 
output is the column index of the non-zero element, this is the 
same way as in quantum gate operations.  

The decryption is straightforward with QPP where permutation 
matrix should be transposed PT because of its unitary and 
reversable properties.  

A. Resistant to Differential Analyses 

O’Connor (1993) [22] has shown that the highest probability p 
of the differential characteristic for an n-bit bijective 
transformation with a randomly chosen permutation matrix is 

at most p =  and for n = 8, p = 2-4. It has been shown from 

[2] that the transformations of ShiftRows and MixColumns are 
equivalent to use active S-Boxes in the SubBytes step per 
round. Since the number of active S-Boxes for 4-round AES is 
at least 25 [2], the overall probability of the differential 
characteristic for 4-round AES is 2-100 or averagely 2-25 per 
round. 

For a QPP of 16 randomly selected permutation matrices, 
this probability of the differential characteristic per round is 
averagely at (2-25)16 = 2-400 for the proposed AES-QPP , which 
is less than the probability of the differential characteristic for 
the standard 14-round AES-256. Therefore, we then conclude 
that any differential analysis would not pose a security threat 
to AES-QPP.  

B. Resistant to Linear and Integral Analyses 

At the end of the MixColumns step, the 16 bytes of the 
output would again be non-linearly transformed by the same 
QPP of 16 permutation matrices. This can be considered as a 
natural extension from the XOR operations of AddRoundKey 
to generic bijective permutation transformations. This 
replacement eliminates the linearity between rounds and 
further weakens the linear cryptoanalysis.  

Integral analysis [6] demonstrates that a single secret S-
Box would exponentially increase the time complexity in 
terms of encryption equivalents from 217 for 4-round AES-128 
to 290 for 6-round AES-128, in comparison with standard 
AES-128 from 214 for 4-rounds to 244 for 6 rounds. With the 
proposed AES-QPP round of 16 permutation matrices and 
assumption that the same integral analysis can be applied, the 
time complexity would be at the level (217)16 = 2272 for 4-
rounds in terms of encryption equivalents. Based on this, we 
conclude that the integral analysis would not pose security 
threats to the proposed AES-QPP for more than 4 rounds.  

Another benefit from AES-QPP is to eliminate the key 
schedule process which causes the round key correlations 
between different rounds. The proposed AES-QPP removes the 
dependence of implementation on the key length, that is, 
different key lengths would have the same implementation. 

………       

  P1                      P2                  Pi                      P16 

 
Figure 1. the illustration is a typical QPP with 16 
permutation matrices of 256x256.  



Based on the above security considerations, it possibly offers a 
good round reduction and leads to a better performance. 

C. Round Reduction 

In AES encryption, diffusion capability is majorly contributed 
through ShiftRows and MixColumns over a block then 
through repeating rounds. SubBytes only provides diffusion 
over GF(8). AES-QPP extends the diffusion capability from 
GF(8) to GF(8)16, equivalent to extend the overall diffusion to 
2048-bit field. This enlarged diffusion capability would allow 
us to reduce the number of rounds in AES. AES-256 needs 14 
rounds to achieve good randomness in ciphertexts. We expect 
the number of rounds in AES-QPP to be reduced to 5 rounds. 
 

D. Performance 

The typical round in AES-QPP demonstrate a slightly less 
CPU time in comparison with the standard AES round. 
Therefore, the round reduction in AES-QPP directly adds 
benefits to performance gains: 3x encryption speed, lower 
about two 3rds of latency with about 1/3 of energy 
consumptions.    
 

E. Footprint  

The compiled AES-QPP is 1.39KB in comparison with 
11.5KB for AES footprint in openssl. The sparse QPP 
matrices take 16*256 = 4KB memories, much more than AES 
memory usage 0.47KB. In order to reduce the memory usage, 
we may need to reduce the permutation matrices from 8-bits to 
4-bits and use 32 permutation matrices for QPP, which can 
bring the memory usage down to 0.5KB.  

IV. DISCUSSIONS 

The ciphertext indistinguishability is a great measure of a 
cryptosystem for security. The randomness analysis of the 
ciphertexts produced from a cryptosystem can be performed 
with the standard randomness testing tools such as NIST test 
suite. We have implemented the proposed AES-QPP in C and 
run all testing in the same system with AES-256. We then 
compared ciphertext randomness for the standard AES-256 
ciphers with the proposed AES-QPP for 5 rounds and10 
rounds.  A single biased plaintext file of 100 MB is created by 
simply repeating an English sentence of 125 characters by 
800,000 times. The same plaintext file is encrypted with the 
standard AES-256 and the proposed AES-QPP with 5 and 10 
rounds in CBC-mode. The reason why we use a biased 
plaintext is because it can clearly demonstrate QPP’s 
confusion and diffusion capability. It should be noticed that 
there is not required to pass randomness testing for ciphertexts 
produced from a cryptographic algorithm. However, 
ciphertexts with good randomness would increase the security 
of data encryptions against the statistical attacking. All output 
encrypted files are supplied to NIST 800-22 randomness 
testing suite and testing results are shown in Table 1. AES-256 
and AES-QPP with 5 10 rounds pass all 15 randomness tests 
as what we expected, with exception of AES-QPP-10 where it 

failed the Overlapping Template test with their Chi-Square 
falling beyond 0.01-0.99. The testing results for AES-QPP 
indicate that the unification of SubBytes and AddRoundKey 
with QPP maximizes the diffusion capability and the number 
of rounds can be reduced to 5. 

Table 1. NIST 800-22 randomness test reports are tabulated for 
the standard AES-256 and AES-QPP for 5 and 10 rounds. Overall 
randomness is observed for all ciphers. 

Test name AES-256 5 Rounds  10 Rounds 

Frequency Success Success Success 

Block Frequency Success Success Success 

Cumulative Sums Success Success Success 

Runs Success Success Success 

Longest Run Success Success Success 

Rank Success Success Success 

FFT Success Success Success 

Non-Overlapping Template Success Success Success 

Overlapping Template Success Success Failure 

Universal Success Success Success 

Approximate Entropy Success Success Success 

Random Excursions Success Success Success 

Random Excursions Variant Success Success Success 

Serial Success Success Success 

Linear Complexity Success Success Success 

 
ENT is another interesting randomness testing tool created 

by John Walker [18]. It is not part of any official RNG 
evaluation scheme, but it has successfully identified flaws in 
RFID card key generators [19], particularly the DESFire EV1 
[19], Mifare Classic and quantum random number generator 
Quantis devices [20]. Hurley-Smith, Patsakis and Hernandez-
Castro [21] recently identified the unbearable lightness of 
FIPS 140-2 randomness tests with ENT. Although some 
image files, especially Webp format, can pass ENT 
randomness test, it is still the most sensitive testing tool to 
identify byte level bias in the testing data. It should be very 
interesting to perform ENT randomness testing with ciphers 
from AES-256 and AES-QPP. ENT testing provides six 
output statistics: entropy, compression, χ2, serial correlation, 
arithmetic mean and Monte-Carlo estimated value for π. We 
use the same ciphertext files as used in NIST testing of Table 
1 for ENT testing and results are shown in Table 2 for byte 
level and in Table 3 for bit level. 

It is not surprising from Table 2 that AES-256 and both 
AES-QPPs successfully passes the six tests. For entropy test, 
they all show the same 7.999998 bits for a byte cipher data. 
They all produce excellent Chi-Square values around 256, 
especially for 5-round AES-QPP where it demonstrates a 
value of almost exactly 256 for Chi-Square, with a p-Value of  
0.46. For 10-round AES-QPP, the Chi-Square values is 
slightly off of  256 with p-Values of  0.697. It is surprisingly 



noticed that our AES-QPP with 5 and 10 rounds demonstrate 
much better randomness in their ciphers encrypted from very 
biased plaintexts than some hardware RNG [18, 19] and 
quantum random number generator Quantis devices [20]. The 
simple arithmetic mean is expected to be ideally 127.50 for 
byte randomness tests. AES-256 and AES-QPP are all passed 
for this test. All ciphers also give the very good Monte Carlo 
𝝅 value and show very small serial correlation for each byte to its 

previous byte. 

 
As what we expected, AES-QPP (5 rounds) demonstrates 

extraordinary cryptographic characteristics with enhanced 
confusion and diffusion capabilities by leveraging the high 
entropy and strong diffusion from QPP over a 16-byte block. 
Through randomness analysis tools, the number of rounds in 
AES-QPP could be reduced to 5. This round reduction would 
boost AES performance by 3x times. In addition to this 
performance improvement, the proposed AES-QPP with 5 
rounds also works with flexible input key length from 256 bits 
to 16x256 = 4 KB.  

 

V. CONCLUSION 

In the standard AES, SubBytes is a permutation defined by the 
multiplicative inverse of the input byte,  designed with well-
considered non-linearity. However, AddRoundkey performs 
linear transformations with XOR operators. These two steps 
belong to the same type of permutation transforms over the 8-
qubit computational basis. That leads to a natural unification 
of SubBytes and AddRoundkey via QPP of 16 randomly 

selected permutation matrices based on the encryption key. 
The unified AES round becomes QPP + ShiftRows + 
MixColumns + QPP, called AES-QPP. We analysis the 
security improvement with this proposal against the 
differential and linear analysis. Our implementation and  
randomness analysis demonstrate that the number of AES-
QPP rounds could be reduced to 5 rounds for quantum safe 
encryptions due to the extra diffusion contributions from QPP. 
The direct benefit from AES-QPP is the key length is no 
longer limited to 256 bits, but scalable based on the security 
requirement without changing the implementation. The round 
reduction would directly benefit to resource constraint IoT 
devices. In the future, we plan to explore AES-QPP for 4-bit 
QPP to further reduce memory space for QPP storage to allow 
AES-QPP to work for some special IoT devices. 
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