3 Weaknesses of Post-quantum Cryptography The World Can’t Afford to Ignore

Back in 1999, everybody caught the “Y2K” bug. According to Y2K’s “prophecy of doom”, the transition into a new millennium would wreak havoc on computer networks globally and ultimately bring our entire civilization to a grinding halt.

Y2K turned out to be a damp squib.

But it’s highly unlikely that Y2Q or “years to quantum” will be as easy to tackle. Y2Q is approaching – and fast!

Experts like Michele Mosca, Deputy Director at the , believe that the odds of reaching Y2Q by 2026 are 1 in 7 and 1 in 2 by 2031. When Y2Q becomes a reality, quantum computers will easily break the outdated cryptographic protocols we currently rely on to protect our systems and data. Assets worth US$3.5 trillion are at risk because they still rely on outdated cryptography!

Currently, the best way to ward off future quantum attacks is to develop stronger quantum-resistant encryption. And of the many approaches that are being developed today, post-quantum cryptography (PQC) appears to be the most promising.

But even though PQC has garnered support from governments thanks to its cost-effectiveness, many PQC methods work well only in the lab. In unpredictable real-world environments, they can struggle to stand up to scrutiny. Not only that, but they can be difficult to deploy (though certainly not as difficult as QKD).

Here are the three main drawbacks of PQC-based systems you need to be aware of. $3.5 trillion worth of assets is at stake!

Large Key Sizes & Performance Costs

Most PQC systems require much larger keys than classical public-key algorithms. While the large key sizes make PQC algorithms more secure, they have serious implications for the performance of quantum-resistant cryptography.

Compared to legacy public-key cryptosystems, PQC algorithms can take more time to encrypt and decrypt messages. Not only that, but the larger keys occupy more storage space, need more memory, and require more network bandwidth.

At smaller scales and with small amounts of data, you might not even notice the performance cost of quantum-resistant cryptography. However, once you start transmitting and handling thousands of different keys simultaneously, the performance impact of PQC will begin to add up.

Old infrastructures with outdated hardware may be unable to keep up with the performance requirements of PQC. Worse, PQC might affect latency-sensitive workloads, like computer vision systems in autonomous vehicles. Resource-constrained devices like smartphones or IoT devices may be unable to run PQC as well.

The bottom line is that you may need to upgrade your infrastructure to support your transition to PQC. So even though PQC can be delivered to any device through software, the potential need to upgrade your infrastructure might make PQC’s deployment very challenging.

There is no way around this – if you want to protect yourself from quantum threats, you’ll need to accept some costs. That being said, some PQC algorithms are more efficient than others – you’ll want to use them to protect your infrastructure.

Non-Ideal Scalability

Many PQC algorithms struggle to maintain their hardness (resistance to attacks) at scale. As an example, lattice-based cryptography, which is one of the promising PQC techniques being researched, scales well but only achieves average-case hardness. In simple terms, average-case hardness means that lattice-based cryptography is resistant to most (but not all) quantum attacks.

It appears that scalability and encryption hardness are competing qualities. We can excel at one or the other, but not both. That being said, this might be true only for the PQC systems that are currently in development. In the future, researchers and cybersecurity vendors might be able to come up with solutions that can maintain their hardness at any scale.

Vulnerability to Advancements in Quantum Tech

Unlike quantum cryptography and, in particular, quantum key distribution (QKD), quantum-resistant cryptography will be sensitive to increasing quantum computing power. QKD is based on quantum mechanics and is theoretically impervious to attacks from quantum computers, regardless of their computing power. QKD has many issues that limit its real-world security, but it provides future-proof security at least in theory.

Now, the vulnerability of quantum-resistant cryptography to advancements in quantum technology is a very long-term problem – we probably won’t have to worry about it for quite some time. Still, this is something that we need to keep in mind going forward.

As quantum computers become more powerful, early PQC algorithms may need to be upgraded or replaced entirely. Sure, we probably will be able to somewhat offset the increasing power by using longer cryptographic keys. But eventually, PQC might become defenseless against very advanced and powerful quantum computers.

There’s also the possibility that researchers will come up with some sort of quantum algorithm that can easily solve the math that underlies PQC. Just like Shor’s algorithm shattered our assumptions about classical cryptography, researchers may someday come up with a neat trick that will be able to easily defeat PQC.

Prepare For Quantum With QiSpace™

At Quantropi, we believe that proactiveness and agility are the keys to protecting ourselves from the attacks of both today and tomorrow.

As the only quantum security provider in the world offering the 3 prerequisites for cryptographic integrity – Trust, Uncertainty, and Entropy (TrUE) – Quantropi is a force to be reckoned with in quantum cybersecurity. Our patented TrUE technologies provide end-to-end protection across entire enterprise infrastructures, starting from on-premises data centers and ending with communications between employees.

A highlight of TrUE is MASQ™ – Quantropi’s novel PQC algorithm that uses much smaller keys than NIST finalists. MASQ™ maintains performance similar to classical algorithms while offering the same or better quantum-safe protection.

All of Quantropi’s TrUE technologies are accessible via our flagship QiSpace™ platform. Talk to us today to learn more about QiSpace™ and how it can help you prepare for the future!

Experts like Michele Mosca, Deputy Director at the University of Waterloo’s Institute for Quantum Computing believe that the odds of reaching Y2Q by 2026 are 1 in 7 and 1 in 2 by 2031. When Y2Q becomes reality, quantum computers will easily break the outdated cryptographic protocols we currently rely on to protect our systems and data. That’s assets worth US$3.5 trillion that are at risk because they still rely on outdated cryptography!

Currently, the best way to ward off a possible future quantum attack is to develop stronger quantum-resistant encryption (aka post-quantum cryptography or PQC). But the truth is, most PQC methods work well only in the lab. In unpredictable real-world environments, they just cannot stand up to scrutiny. Moreover, researchers at the University of Waterloo’s erstwhile Quantum Hacking Lab have demonstrated that theoretically-perfect PQC is not as ‘unhackable’ or ‘quantum-proof’ as its supporters claim. 

Here are the 3 drawbacks of PQC-based systems we need to be aware of. $3.5 trillion worth of assets are at stake!

Increased Transition Complexity

Moving to a PQC-based system will affect the performance of an organization’s current cryptographic infrastructure since it will involve more computations and therefore an increased workload. It may even render some parts of the system obsolete, raising the need for replacement hardware and adding to transition complexity. As system complexity increases, it will also increase costs and lengthen timelines.

As an organization starts thinking about the move from classical to PQC-based encryption, it cannot ignore these disadvantages. Meanwhile, its vulnerability to quantum attacks keeps increasing.

Difficult to Scale

Many PQC algorithms are notoriously difficult to scale. For example, for lattice-based cryptography, which is a popular method for post-quantum cryptography, it is very difficult to prove its ‘hardness’ (a measure of an algorithm’s resilience to attacks) at scale. Current lattice algorithms that do manage to scale well only achieve average-case hardness. Thus, there is a trade-off between hardness and scalability. Either can be achieved, but not both.

Larger Key Sizes & Limited Speeds

Most PQC algorithms require much larger key sizes than existing public key algorithms. For example, multivariate cryptography, which is also considered a good basis for PQC, involves very large key sizes, which require more storage inside a device. They also result in large amounts of data to be sent over a communications system for key establishment and signatures. Therefore more time is required to encrypt and decrypt messages, or to verify signatures at either end. This limits transfer speeds, which can be dangerous in case of a sudden quantum attack.

At Quantropi, we believe that every organization needs to harden today’s defences against today’s attacks AND tomorrow’s attacks by quantum computers. We’re the only cybersecurity company in the world providing the 3 prerequisites for cryptographic integrity: Trust, Uncertainty, and Entropy (TrUE). Powered by quantum mechanics expressed as linear algebra, our patented TrUE technologies establish Trust between any two parties via quantum-secure asymmetric MASQ™ encryption (coming soon); ensure Uncertainty to attackers, rendering data uninterpretable forever, with QEEP™ symmetric encryption; and provide Quantum Entropy as a Service (QEaaS) with SEQUR™ – ultra-random key generation and distribution to enable secure data communications. All Quantropi’s TrUE technologies are accessible via our flagship QiSpace™ platform.

Talk to us today!

Quantum-secure any application, product, network, or device with the QiSpace™ platform — without having to sacrifice performance or make major investments in new technology or infrastructure. See for yourself how only QiSpace™ offers TrUE quantum security via all three essential cryptographic functions. Leverage asymmetric encryption algorithms (the “Trust” or “Tr” of “TrUE”) via MASQ™, symmetric encryption (“U” for “Uncertainty”) via QEEP™ and strong random numbers (“E” for “Entropy”) via SEQUR™.  Make it TrUE with QiSpace™ — and protect your business, brand, and customer promise. Now and forever. 

To learn more about our quantum-secure solutions, don’t hesitate to get in touch with our experts!

Sacha Gera

Sacha Gera possesses a deep understanding of the industry’s nuances through extensive experience in the cybersecurity sector.The Ottawa-based leader and Forty Under 40 recipient has nearly twenty years of experience in SaaS industries, professional services, and M&A, working in technology for both start-ups and large multinational organizations, such as IBM, Nortel, CGI and Calian. He currently also holds the position of CEO at JSI and Director at CENGN & Ottawa Board of Trade BOD.

Christopher McKenzie

With his extensive experience in software development and strong analytical skills, Chris can handle the entire end-to-end software development life cycle. Prior to Quantropi, he served as Director of Product Development at Sphyrna Security, Inc., where he managed the delivery of security compliance automation and data diode appliance products, and as Commercial Software Development Manager at Cord3, Inc., where he managed the development of an advanced data access policy management product. Chris graduated from Computer Science at Algonquin College and the Ottawa School of Arts in 1998. Read less

Dr. Randy Kuang

Randy holds a doctorate in quantum physics. His research findings have been published in top international journals and named “Kuang’s semi-classical formalism” by NASA in 2012. With a career spanning IT, including with Nortel as senior network researcher & developer, he co-founded inBay Technologies in 2009, serving as CTO of the cybersecurity platform. As the first recipient of a patent for two-level authentication (2011), Randy is a prolific inventor, with 30+ U.S. patents in broad technology fields, such as WiMAX, optical networks, multi-factor identity authentication, transaction authorization, as well as concepts, technologies and industrial applications for quantum key distribution.

Cory Michalyshyn

Cory brings a breadth of experience to the Quantropi team, working fractionally with multiple SaaS technology companies as CFO, and as the CFO with Celtic House Venture Partners. Prior to these roles, Cory was CFO and COO at Solink, and played a lead role in the metrics-led pivot to a direct-sales SaaS model, followed by multiple VC-backed funding rounds and their recognition as one of the fastest growing start-ups in Canada. He qualified as a CPA while serving technology, VC & PE-fund clients at Deloitte, and earned his Bachelor of Commerce at Queen’s University.

Ken Dobell

Ken leads marketing strategy at Quantropi. In high demand as a consultant with 25 years’ experience in performance media and an award- winning creative background, he has completed successful transformations, (re)branding and product development mandates with KPMG, Keurig DrPepper, Fidelity,the Previan Group of companies, Coveo, and numerous others. Previously, Ken pivoted an offline advertising brokerage to a leading-edge, data-driven performance agency as President of DAC Digital, held a progression of international leadership roles with Monster.com in North America and Europe, pioneered a range of multi-channel initiatives as VP Marketing with a global franchisor, and introduced a mobile-first programmatic media offering to Canada within WPP.

Raj Narula, P.Eng.

A seasoned technology executive, business builder and angel investor, Raj has held operational and advisory roles in Recognia (Trading Central), Belair Networks (Ericsson), March Networks (Infinova), Sandvine (Procera), Neurolanguage (ADEC), Bridgewater Systems (Amdocs), Vayyoo (Cafex), TenXc (CCI), 1Mobility (Qualys) and others. Having divided his time among North America, EMEA and Asia-Pac for over 20 years, Raj speaks several languages. He grew up in Asia, Europe, South America and Canada, and holds a B.Eng degree in Mechanical Engineering from the University of Ottawa. He is also a co-founder and Charter Member of the Ottawa chapter of TiE (the Indus Entrepreneur).

Michael Redding

Before joining Quantropi, Mike was Managing Director and co-founder of Accenture Ventures, where he grew a global portfolio of strategic partnerships and 38 equity investments in emerging technology startups.

During his nearly 30 years with Accenture, he incubated and launched technology innovations for enterprises across multiple geographies and industries. Ever-passionate about bold ideas with game-changing results, he speaks frequently on the impact of emerging technology on large organizations.

With a bachelor’s degree in Electrical Engineering and Computer Science from Princeton, and a Master’s in Biomedical Engineering from Northwestern, Mike is a former member of the Board of Directors for the Accenture Foundation and Board Observer for startups Maana and Splice Machine.

Alex He

Alex is a product-oriented project manager who bridges the gaps between the company’s engineering and commercial teams. He has over ten years of experience in the analysis, design and development of enterprise-class applications, with a particular focus on creating optimal user experiences (UX). Ever passionate about cybersecurity solutions that can deliver solid security without unreasonably sacrificing customer convenience, Alex is the lead inventor of a registered patent on user interface security. He is committed to helping ensure that the Agile software engineering team at Quantropi delivers consistently high-quality, high crypto-agility cybersecurity solutions for next-generation communications.

Nick Kuang

As VP Corporate Services, Nick plans, directs and coordinates a wide range of activities aimed at achieving Quantropi’s vision of the Quantum Internet. He has a keen interest in transformative technologies and the possibilities they offer for bettering our everyday lives. A pharmacist by training, Nick nurtures teams with a focus on integrity and collaborative effort, coupled with strong attention to detail. With prior experience in a successful biotech start-up developing point-of-care test kits, he enjoys the fast pace and challenge of the start-up environment.

Tina Wang

Tina develops websites and participates in a range of different projects, using new frameworks for front-end UI, along with Vuejs, Angula, Beego, Ruby on Rails, and Electron. She developed Quantropi’s desktop CipherSpace application by integrating Electron, Webassembly and Go, to ensure a good user experience, as well as perfect operating system compatibility. She is also part of the dynamic and efficient QKD-NODE project team. Tina is always looking for new ways to increase her knowledge, improve her technological proficiency and enhance her strong execution and implementation skills. Prior to Quantropi, Tina served as a full-stack web developer at Sunny Future, where she maintained a WordPress home site and managed the release of new content for the company.

Bond Vo

Bond Vo is the Business Analyst of Quantropi. Along with Quantropi, Bond has been dynamic in accordance with a fast and evolving startup environment and is responsible in a wide range of areas including market research, funding, and more involved in the controller roles to oversee day to day accounting operation as well as build financing models and budget to achieve company’s ultimate goals/objectives. Bond has applied best practices consistently and successfully supports equity, debt, and non-dilutive funding for Quantropi since joint the team. He earned a Bachelor of Commerce concentrated in Finance from Carleton University. Outside of his professional career, Bond also participated in volunteer for the Vietnamese Immigration Student Association (VISA) to help and support students as well as newcomers in Canada.

Pauline Arnold

As James Nguyen’s EA, Pauline Arnold brings more than 40 years of experience in complementary customer service and administrative roles. Prior to Quantropi, she served 20 years as Branch Manager and an assistant in investments, and over 20 years at Metropolitan Life Canada in various aspects of the insurance sector – assisting clients, management and colleagues to complete tasks, solve problems, address questions and achieve goals. She also worked part-time for Royal Lepage Performance for 5+ years as a receptionist & admin, and for 5 years was chair of the TKFG’s charity golf tournament.

Dafu Lou

Dafu is Quantropi’s Director of engineering. Prior to Quantropi, he served as a technical leader at Irdeto, a world-leading provider of digital platform security software, where he was responsible for white-box cryptography, cloaked CA secure core, and iOS/android application protection services, among others. Prior to Irdeto, Dafu served as a senior software engineer at SecureNex Systems, where he led the implementation of an SSL-VPN solution and ECC-based secure data storage & PKI. He earned his Ph.D. in electrical engineering from the University of Ottawa in 2009. Dafu is also a part-time professor, teaching VLSI, Cryptography and other subjects at uOttawa.

Eric Chan

Eric Chan a.k.a. EEPMON is a Crypto / Digital Artist with 15 years in the industry – and Quantropi’s Creative Emissary. His hybrid fractal/digital creations have been seen in fashion, comics to museums and has exhibited worldwide. EEPMON’s collaborations include Canada Goose, MARVEL, Snoopy, Microsoft Xbox, Canada Science & Technology Museum and was a TEDx performing artist. In 2018 he represented Canada on its first Creative Industries Trade Mission led by Canada’s Minister of Heritage and serves on the Canadian Museums Association‘s Board of Directors. At the same time, he is currently completing his Master of Information Technology – Digital Media at Carleton University. 

Jeff York

Jeff’s distinguished career includes an extraordinary track record of successfully navigating and spearheading expansions and transforming companies into industry giants. Jeff was the President and CEO of Giant Tiger Stores for 10 years. In this capacity, Jeff helped grow the business from a regional discount chain with 250 million in sales to 1.4 billion in sales nationally as Canada’s third largest discount chain. In 2009, Jeff joined Farm Boy with a mandate to expand the business. Under his leadership, the company grew from a nine-store chain in the Ottawa region to 26 stores in Ottawa, Kingston, the GTA and Southwestern Ontario. Farm Boy was acquired by Sobeys’ parent company Empire Company Limited for $800 million in 2018.

Patricio Mariaca

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum quis mauris justo. Vestibulum vel nulla vel tortor dignissim auctor. Donec porta semper lacus, id mollis metus pretium at. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Nam malesuada ullamcorper metus, eget facilisis tortor posuere sed.

Talk To Us

Marco Pagani

Marco Pagani began his long and successful career as a senior executive in Ottawa’s high-tech sector in 1985, with Nortel Networks (then Bell-Northern Research). He rose across two decades to become president of several Nortel Business Units, managing more than 2,000 employees and over $1 billion in revenue. Having gone on to advise numerous organizations, as well as guide a range of companies through complex, critically necessary turnarounds, he is particularly respected for placing a strong emphasis on ethics and corporate governance in building the culture of the corporate and not-for-profit organizations he leads and supports.

Lawrence O’Brien

Lawrence O’Brien is a founder of Calian Group and former Mayor of Ottawa. Larry founded Calian Technology Ltd. in 1982 with a $35 investment and built it into a $200M/ year profitable, dividend-paying public company by 2006. As the CEO of Calian, Larry executed an IPO in 1993, completed five significant acquisitions, and managed the overall strategic growth of Calian from 1982 until 2006. After retirement from Calian in 2006, Larry served as the 58th mayor of Ottawa and proceeded to push forward four major economic development projects, including a Light Rail Transit tunnel in the core of the city, a new Convention Centre, now known as the Shaw Centre and a new trade show facility and a major urban renewal project that rebuilt 40 acres of dilapidated downtown Ottawa called Lansdowne Park into a vibrant, destination for citizens and tourist.

Dat Nguyen

Dat Nguyen has executive experience with top global consultancies such as IBM, Accenture, Ernst & Young (EY), and decacorn start-up Grab at C-Level roles.

During 20 years of consulting, Dat has worked with multiple companies across Canada, the USA, the Caribbean, and the Asia Pacific with CEO roles and leadership such as CEO for Accenture Vietnam, CEO of Grab Vietnam, and Partner of EY Consulting leading the technology practice (including Cybersecurity) in Indochina (Vietnam, Laos, Cambodia).

Dat is a tech entrepreneur, a co-founder, and a digital ecosystem builder. He is passionate about new and innovative technologies and is involved in multiple companies across verticals such as AI, Blockchain, Web3, Cybersecurity, InsurTech, and FinTech. Dat is currently a member of the ASIA CEO Club.

Dat earned the Executive Education at Harvard University, John F. Kennedy School, and received the Executive Certificate in Public Leadership in 2018.

Tanya Woods

Tanya Woods brings more than a decade of successful strategic advocacy experience to her role at the Chamber of Digital Commerce Canada. Tanya most recently served as the Interim Executive Director for the Blockchain Association of Canada and is a champion for Canada’s digital innovation ecosystem, domestically and globally. Tanya has held senior-level positions in the industry, representing national and multinational organizations in the telecommunications, technology, and entertainment sectors, including BCE Inc., Microsoft, Hut 8 Mining, and Nintendo. She has also advised and represented the Government of Canada in global trade negotiations and on the growth of the country’s blockchain ecosystem. Tanya is a global public speaker and published author with degrees from the London School of Economics, Ottawa University, and American University Washington College of Law. She was named among the top 10 “Leading TechWomen in Canada” by the Government of Canada, a “Trailblazer” by the Canadian Broadcasting Corporation, and a “Top 40 under 40” in Canada’s Capital by the Ottawa Chamber of Commerce and the Ottawa Business Journal.

Renato Pontello

Renato has 30 + years of experience as a trusted legal advisor and strategist. As an executive he has assisted numerous companies and their Boards of Directors to plot out and implement significant growth, diversification and reorganization plans in challenging circumstances. He was lead counsel on the sale of Zarlink Semiconductor’s $680 million dollar business as part of a takeover bid. At Zarlink he negotiated significant development, manufacturing, supply, distribution and IP licensing agreements with leading suppliers (eg Cisco, Nokia, Ericsson, Medtronic, Starkey, TSMC, Global Foundries, etc.). Renato has been involved in M&A, restructuring, financings and commercial contracts for dozens of companies. He also provides legal support in regards to intellectual property, securities, real estate leasing and employment law. He represents clients mostly in the SaaS, wireless, proptech, quantum, renewables, e-commerce, engineering and real estate conversion space.

Timothy Stapko

Timothy Stapko is a senior software engineer at Microsoft with 20+ years of experience in the information technology industry specializing in embedded systems, IoT security, security (SSL/TLS), and 9+ years of experience leading projects and a team of engineers on two commercially successful implementations of TLS for resource-constrained embedded systems (including cryptography, X.509, DTLS, HTTPS, etc.). Tim also has experience with US federal information standards (e.g., FIPS) and other standards and certifications (e.g., Common Criteria/EAL) and specializes in C, C++, FIPS 140-2, Linux, SSL, TLS, TCP/IP

Jay Toth

Prior to joining Quantropi, Jay was Chief Growth Officer of Kepro, responsible for the organization’s overall growth strategy in government markets. Before that, Jay held a progression of sales leadership and general management roles during his nearly 17 years at Microsoft, including GM, Enterprise Services, State and Local Government & Education, during which period he was responsible for the most complex business in the U.S. subsidiary (with 2,000 customers across the country), nearly doubling revenue from $160M to over $300M. Prior to his career at Microsoft, Jay was VP at Risetime, where he launched and ran a Financial Services practice area; a Principal at Lakefront, where he was responsible for business development and strategic partnerships; and a Manager at Accenture in the Emerging Technology Solutions group. He holds a Bachelor of Science in Mechanical Engineering from the University of Virginia.

Nik Mahidhara

Prior to joining Quantropi, Nik most recently provided strategic and tactical leadership as Director of Finance overseeing a large corporate treasury department. Here, he managed over $2B in operating funds and $1B in financing. Other responsibilities included cash management and forecasting, liquidity and investments, corporate financing, financial risk management as well as accounting and internal control management. Preceding that, Nik provided assurance, accounting and advisory services focused on high tech clients with PricewaterhouseCoopers (PwC) Canada. Nik has held progressive finance roles in various different environments and holds a Chartered Professional Accountant (CPA) designation and an MBA from the Schulich School of Business.

Brian LaMacchia

Brian LaMacchia recently retired from Microsoft Corporation where he was a Distinguished Engineer and head of the Security and Cryptography team within Microsoft Research. He is an Adjunct Associate Professor in the Luddy School of Informatics, Computing, and Engineering at Indiana University Bloomington, an Affiliate Faculty member of the Paul G. Allen School of Computer Science and Engineering at the University of Washington. Brian also currently serves as Treasurer of the International Association for Cryptologic Research (IACR) and as a Vice President of the Board of Directors of Seattle Opera. Brian received S.B., S.M., and Ph.D. degrees in Electrical Engineering and Computer Science from MIT in 1990, 1991, and 1996, respectively.

James Nguyen

James Nguyen is a Co-Founder and the CEO of Quantropi, a quantum-secure communications company established in 2018. Alongside Dr. Randy Kuang, he aims to uphold truth and trust in the digital economy on a global scale. In 2021, James was officially recognized as a recipient of Ottawa’s Top Forty Under 40 Award, and he holds a degree in Economics from Carleton University.

With a profound understanding of banking and global finance, James actively invests in and advises early-stage companies in the fields of Fintech, Graphene, and Quantum Technologies, particularly in emerging markets. Prior to his role at Quantropi, he served as the Chief Investment Officer and VP of Asia Operations for a diverse group of private and public interests involved in real estate, mining, energy storage, and manufacturing. In this capacity, he was responsible for strategy, banking, and global expansions, successfully securing substantial investments and partnerships to commercialize graphene applications across various industries.

James participates as a speaker and panelist at international conferences focused on quantum technology, cybersecurity, and investment. He also contributes to the community as a volunteer and mentor, leveraging his expertise and experiences to benefit others.